
Power Invariant Vector Sequence Compaction

Ali Pınar C. L. Liu

Department of Computer Science Department of Computer Science
University of Illinois at Urbana-Champaign National Tsing Hua University

Simulation-based power estimation is commonly used for its high
accuracy, despite excessive computation times. Techniques have
been proposed to speed it up by transforming a given sequence
into a shorter one while preserving the power consumption char-
acteristics of the original sequence. This work proposes a novel
method to compact a given input vector sequence to improve on
the existing techniques. We propose a graph model to transform
the problem to the problem of finding a heaviest weighted trail in
a directed graph. We also propose a heuristic based on min-cost
flow algorithms, using the graph model. Furthermore, we show
that generating multiple input sequences yields better solutions in
terms of both accuracy and simulation time. Experiments showed
that significant reduction in simulation times can be achieved with
extremely accurate results. Experiments also showed that the gen-
eration of multiple sequences improved the results further both in
terms of accuracy and simulation time.

The growing need for low-power systems raises two major issues:
design optimization for low power and accurate estimation of power
consumption. Both issues have been studied extensively in re-
cent years. This work proposes a method to speed up simulation-
based power estimation, which often suffers from excessive run-
ning times. For a CMOS circuit, the dominant source of power dis-
sipation is the dynamic transition current. Other sources are much
smaller and can be neglected. For a combinational circuit, power
consumption corresponding to an input vector sequence depends
only on the transitions between successive input vectors. So, if a
given vector sequence can be transformed to a shorter one while
preserving the transition frequencies, the shorter sequence can be
used to estimate the power consumption for the original sequence.

Some recent works studied the problem of transforming a given
vector sequence to a shorter one preserving the power characteris-
tics. Tsui et al. [9] and Marculescu et al. [4] proposed methods
for combinational circuits. These methods have the disadvantage
of generating vectors that are not in the original sequence. Huang
et al. [3] used a two phase strategy: they derived the transition pro-
file of internal signals by a fast power estimator in the first phase,
and then generated a new and shorter sequence using this profile
in the second phase. Marculescu et al. [5] used a Markov model to

Supported in part by the National Science Foundation (NSF) under grant 1-5-
31333 NSF MIP 96 12184.

generate a compact sequence, and subsequently they proposed a hi-
erarchical model with macro and micro states to model the original
sequence [6].

This paper proposes a novel method to transform a sequence to
a shorter one preserving the transition frequencies. We will call
this problem the Sequence Compaction problem. In this paper,
we propose a graph model to transform the sequence compaction
problem to the problem of finding a heaviest weighted trail in a di-
rected graph. We propose a heuristic based on the min-cost flow
problem [2] in graphs. We also discuss the problem of generating
several input sequences with different compaction factors as op-
posed to generating merely a single input sequence. In this case,
the power consumption for the original sequence can be computed
as the weighted average of all sequences. This method can generate
accurate results with shorter sequences.

The proposed techniques have been applied to MCNC 91 cir-
cuits [10]. The circuit behaviors were simulated for different input
sequences using SPICE. Experiments show that significant reduc-
tions in simulation times can be achieved with highly accurate re-
sults. The error in estimations is limited to only 2%, where as the
simulation time is reduced by a factor of 5. Moreover, the gener-
ated sequences are reliable for estimation, since they preserve the
transition frequencies. We also showed that by generating multi-
ple sequences the results can be improved further both in terms of
accuracy and simulation time.

The rest of this paper is organized as follows. In Section 2 we
will discuss the problem, propose a graph model, and describe a
heuristic. Section 3 discusses generating multiple sequences. Ex-
perimental results are given in Section 4, and finally we conclude
with Section 5.

The sequence compaction problem aims at transforming a given
vector sequence to a shorter one while preserving its characteris-
tics. An input sequence , is a se-
quence of binary -vectors. A transition, is an ordered
pair of distinct -vectors. We will use to denote the number of
transitions , and to denote the set of transitions in sequence
. The sequence compaction problem can formally be stated as:

Given an integer (viz., the compaction factor), and an input se-
quence , construct a new sequence to min-
imize the cost , where

The accuracy of a solution can be defined as
, being the cardinality of the set . So

minimizing the cost is equivalent to maximizing the accuracy. The
problem is NP-Complete [8], but we can not present the proof here
due to space restrictions.



In this section, we will describe a graph model for the representa-
tion of the problem. In this model, each distinct input vector in
will be represented by a vertex, and each transition will be repre-
sented by several weighted directed edges in the graph. We will
assign the weights such that finding a heaviest weighted trail in this
graph will be equivalent to finding an optimal compact sequence
for . Replacing each vertex on the trail by its corresponding in-
put vector defines the corresponding sequence. The weight of an
edge will be equal to the change in the cost of solution, if the cor-
responding transition of the edge appears in . More specifically,
for a transition in , there will be several edges with

. If an optimal solution has copies of the
edge , then there exists an optimal solution which uses the first
edges: , because the weights of the edges are nonin-
creasing. Exploiting this fact, the weight of the th edge is set to
be equal to the change in the cost, when transition is added once
more to , which already has copies of transition ,

A formal description for the construction of the graph follows.
Let be the input sequence and be
the compaction factor. In the graph representing this
instance of the sequence compaction problem, each distinct input
vector in is represented by a vertex in , and each vertex
in correspond to an input vector in , and for each transition

in ,

(i) The edge set contains copies of edge with
weight .

(ii) If then has one more edge with
weight , where represents the modulo opera-
tion.

(iii) contains M more copies of the edge with weight
, where M is the total number of positive weight edges in

the graph. Note that in the worst case each transition occurs
times, and the number of positive weight edges can be

bounded as .

Edges generated by the first rule correspond to transitions that will
always reduce the error in . On the contrary, edges generated by
the last rule correspond to transitions that will always increase the
error in . The edge produced by the second rule corresponds to
approximating the by either or . There are only
three possible weights for an edge between two vertices. Based on
this observation, we can add capacities to edges in order to avoid
too many edges in the graph.

A trail in this graph clearly describes a sequence for the com-
paction problem. The greater is the sum of weights of the edges this
trail covers, the less will the cost be in the corresponding sequence.
Negative weight edges can be included in the trail for the sake of
forthcoming positive weight edges. A heaviest weighted trail in
this graph gives the optimal solution for the sequence compaction
problem.

Figure 1 illustrates an example. There are 5 transitions from
to . The cost of the first edge can be calculated

as the difference in cost of zero appearances and one appearance,
i.e., . The weight of the sec-
ond edge is the difference between underestimating and overesti-
mating the transition , and can be computed as

. Other edges will cost . In this graph,

B

C D

A [(3/5,1),(1/5,1),(-3/5,M
)]

[(1/2,1),(-3/2,M)]

[(1/2,2),(-1/2,M)]

[(1
,1)
,(-1
,M
)]

[(-
2,1
),(-
3,M
)]

[(1,1),(-1,M)]

[(1,1),(-1,M
)]

6

3

2

3
5

3

2
DC

A B

Figure 1: The graph representation for the sequence
and the compaction

factor . The figure on the left presents the number of transitions,
and the one on the right presents the graph for . Edge weights are written
as weight of the edge, number of edges with this weight . e.g., From
to , there is 1 edge with weight , 1 edge with weight , and
edges with weight , where is the total number of positive

weight edges.

the maximum weighted trail, can be constructed as
. The weight of this trail is

. The corresponding
compact sequence is . The cost of this
solution can be computed as . Note that the accuracy
of the solution is
equal to the weight of a heaviest weighted trail.

The heuristic has three basic steps: (1) removing the positive weight
cycles (2) finding a heaviest weighted trail on the reduced graph (3)
improving the solution by adding back the cycles, if possible. Pos-
itive weight cycles on a graph can be detected by repeatedly apply-
ing the Bellman-Ford algorithm [1]. After removing the positive
weight cycles, a heaviest weighted trail in the reduced graph can be
found by using a minimum-cost flow algorithm. We will augment
the reduced graph, and by finding the minimum cost flow in this
augmented graph, we will identify a heaviest weighted trail in the
reduced graph.

Let be the graph induced by the removal of
positive weight cycles. The flow graph satisfies the
following conditions. The set of vertices is equal to with a
source vertex and a terminal vertex added, i.e., .
The node flows, , are: and for all
other vertices. The source vertex is connected to each vertex in
, and each vertex in is connected to the terminal vertex . The

cost of these edges are all zero, and capacities are all one. If there
exists an edge from to in , contains a distinct edge from
to for each distinct cost value for to edges. The cost of

this edge is equal to the negative of the determining cost value, and
the capacity is equal to the number of edges with this cost value in
.
The min-cost flow problem will identify a trail from to with

the minimum cost. This trail corresponds to a heaviest weighted
trail in the reduced graph. We have used Goldberg’s algorithm and
implementation [2], the complexity of which is ,
where is equal to the largest edge cost for finding teh min-cost
flow solution. The trail found at the second step can be further
improved by inserting the positive weight cycles removed at the
first step.

Consider the example in Figure 1. The positive weight cycles
in this graph can be detected as and

. The flow graph after removing these cycles and negating
the weight of each edge is presented in Figure 2. The min-cost flow
in this graph follows the path . Removing the
source and sink vertices and inserting the cycles removed before,



D[(-1/2,1),(3/2,9)]

[(0,1)] [(0,1)]

[(1/2,9)]

[(0,1)][(0,1)]

C

t

BA

s

[(1,9)]

[(1
,9)
]

[(1,9)]

[(2
,1)
,(3
,9)
]

[(0
,1)
]

[(0,1)]

[(-1/5,1),(3/5,9)]

[(0,1
)]

[(0,1)]

Figure 2: The flow graph for Example 2. Edge weights are written as
weight of the edge, number of edges with this weight . e.g., For ex-
ample, there is one edge with weight and edges with weight
from to .

we get the trail and the
corresponding compact sequence is .

So far, we discuss how an input sequence can be compacted as a
single sequence with a given compaction factor. However, several
sequences with different compaction factors can be generated to
represent the original sequence, and the power consumption can
be estimated by the weighted average of the power consumptions
of these sequences. That is, a given input sequence is repre-
sented by subsequences with compaction factors

, respectively, then the average power consumption
can be estimated as

where is the total power dissipation for . This approach can
be helpful both in decreasing the total length of the input sequences
and in achieving more accurate estimations. We will work on con-
structing a specified number of sequences for an input sequence .
The problem can be stated as:

Given an input sequence , and compaction factors
, construct sequences to minimize

Effective solutions to this problem can be found by using the
graph model and the heuristic for finding a heaviest weighted trail
already described. First, the sequence for is constructed, and
then the edge weights are recomputed considering , before con-
structing . Generally, during the construction of the graph for the
th sequence, the weight of an edge is computed to be equal to the
change in the objective function, with already con-
structed and assumed to be empty sequences.

In this scheme, sequences with large compaction factors can
greedily use negative weight edges to add more positive weight
edges to the trail. However, these positive weight edges might be
covered by another sequence in the upcoming compactions. So, it
might be helpful to construct sequences with high compaction fac-
tors using only positive weight edges. More specifically, satisfying
the condition, for the first few sequences
usually helps, and this can be achieved by allowing the sequences
to be constructed by only those edges produced by the first rule in
the graph definition in Section 2.1.

The methods proposed were implemented in C and applied to the
MCNC91 benchmark circuits [10]. Input sequences were gener-
ated randomly but biased. The power consumption of the circuits
for input sequences were measured with SPICE for maximum ac-
curacy. We worked on 6 circuits and 3 compaction factors: .
We measured the power consumption of the circuits for 4 different
sequences of length 1000. Then the sequences were compacted us-
ing the proposed heaviest weighted trail method (HWT) and the
Markov model (MM) described in [5]. Table 1 presents the average
accuracies for the two methods. In this table, the first three columns
present the name, number of inputs and actual power dissipation of
the circuit, respectively. The other columns present the accuracy
in estimations, calculated as: , where
denotes the average power dissipation for sequence . The results
show that HWT can predict the original power consumption very
accurately, with negligible differences from the original values.

Table 1: SPICE Simulations
Name #inp Power

HWT MM HWT MM HWT MM
C432 36 1878.5 0.7 2.8 0.7 2.4 1.1 2.8
C880 60 3788.7 0.9 5.0 1.8 5.0 2.0 5.5
C1355 41 3956.2 1.8 8.8 2.5 9.3 2.6 9.2
C1908 33 6454.9 1.5 3.3 2.8 4.1 3.1 5.4
cordic 23 1641.5 1.4 4.4 3.1 4.9 3.3 4.6
i3 133 3856.8 0.5 2.2 0.7 2.0 1.7 1.9

Averages 1.1 4.1 1.9 4.6 2.3 4.9

Another important issue is the reliability of the compacted se-
quences. In a compacted sequence, some transitions may be over-
estimated while some others maybe underestimated, and these er-
rors can cancel each other to give an accurate estimation. Such
a compacted sequence is definitely not reliable. Since these com-
paction methods are proposed to avoid simulating long sequences,
the user cannot determine the accuracy of the estimation. So relia-
bility is a major concern. A reliable solution should estimate each
transition accurately. We compared the solution qualities of HWT
and MM in terms of reliability, for 200 input sequences of length
4000. We also wanted to see how far the solutions are from an op-
timal solution. Since the value of an optimal solution is not known,
we used an upper bound on the accuracy of an optimal solution,
which we call the accuracy of an ideal solution. In an ideal
solution, each transition is estimated in the most accurate way, i.e.,
a transition , which appears times in the original sequence
, should appear times in , where maps the
number to the nearest integer. The accuracy computed this way
is only a bound on the optimal value, because there does not nec-
essarily exist a sequence to realize this. Note that the accuracy
of an ideal solution is equal to the sum of weights of positive
weight edges in the associated graph. Table 2 presents the results
(the numbers in parentheses display the std. deviation). The second

Table 2: The reliability for HWT and MM

Acc. HWT

3 852 (87) 3.92 (0.41) 82.0(2.69)
5 592 (68) 3.61 (0.42) 85.3(5.22)
10 329 (33) 3.36 (0.38) 88.2(2.96)

column in Table 2 presents the average length of the sequences gen-



erated by the HWT method and shows that HWT produces much
shorter sequences than MM. The third column displays the aver-
age of the ratio of costs of the solutions of the two methods. The
numbers show that the costs of solutions of HWT are more than 3
times smaller than those of MM, meaning that the solutions by the
HWT are much more reliable. The ratio becomes smaller with in-
creasing compaction factor. The reason for this increase should be
attributed to the increase in the cost of an optimal solution for large
compaction factors. Since, the cost of an optimal solution becomes
higher, the cost due to the imperfectness of the solution becomes
less effective in this ratio. The last column presents the comparison
with the ideal solution. The numbers were calculated as: ,
where denotes the accuracy of the produced solution. It can
be seen that the accuracy of solutions of HWT are within 18% of
the ideal solutions for , going down to 14.7% and 11.8% for

and , respectively. This decrease is most likely because the
bound on the value of an optimal solution becomes tighter as the
compaction factor increases. The results show that the HWT is not
only more reliable than MM, but also generates solutions that are
very close to optimal. The compaction times are negligible com-
pared to the simulation times.

The next set of experiments observes the performance of gen-
erating several input sequences. We worked on 200 input vec-
tors of length 4000. Table 3 presents the results for these exper-
iments. The table displays the total length of sequences for gen-
erating sequences. Each column displays the results
for using the first compaction factors indicated in that row. The
accuracy for , and is computed as , where is
the accuracy of an ideal solution for equal to the first number in
that row. For we computed the improvement in accuracy as

, where and stand for the the accuracy of the
solutions for and , respectively (Note that is no longer
an upper bound, because the last compaction factor is smaller than
the compaction factor is computed for). The results show that

Table 3: Reliability of generating multiple sequences

Acc Acc Imp
3,5,2 852 82.0 808 89.7 1024 5.1
5,8,3 592 85.3 567 89.6 715 13.4
10,15,7 329 88.2 318 89.7 383 4.3

by using compaction factors greater than the intended compaction
factor (the compaction factor if only one sequence would be gen-
erated, which is the first number in each row in this case) more
accurate solutions can be achieved with shorter sequences. The ac-
curacy is increased by 7.7%, 4.3% and 1.5%, whereas the lengths
of the sequences are around 5% shorter. By using a compaction
factor lower than the intended compaction factor, the accuracy can
be improved with the cost of longer sequences. As the last set
of experiments, we measured the power consumption for these se-
quences on circuits. In Table 4, MS correspond to generating three
sequences with compaction actors listed, and HWT correspond to
generating one sequence with the first compaction factor at the top
of the column. The table shows that the accuracies can be improved
by generating multiple sequences. The error in estimation is only
0.9%.

This paper addressed the input sequence compaction problem for
efficient power estimation. We described a novel graph model which
reduces the sequence compaction problem to the problem of finding

Table 4: SPICE Simulations for MS and HWT
Name

HWT MS HWT MS HWT MS
C432 0.7 0.6 0.7 0.6 1.1 1.0
C880 0.9 0.7 1.8 1.2 2.0 1.5
C1355 1.8 1.5 2.5 2.0 2.6 2.2
C1908 1.5 1.2 2.8 1.7 3.1 2.2
cordic 1.4 1.1 3.1 2.4 3.3 2.7
i3 0.5 0.5 1.3 0.5 1.7 0.7
Avg. 1.1 0.9 1.9 1.4 2.3 1.7

a heaviest weighted trail in a directed graph. Then a decent heuris-
tic for constructing a heaviest weighted trail was proposed. The
paper also proposed generating multiple compact sequences with
different compaction factors as opposed to constructing merely a
single sequence. The experimental results showed that simulation
times can be significantly reduced with a negligible difference in
accuracy. Furthermore, generating multiple sequences helped to
reduce the simulation times and to increase accuracy.

[1] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Al-
gorithms, The MIT Press, 1990.

[2] A.V. Goldberg, An efficient implementation of a scaling
minimum-cost flow algorithm, J. Alg., Vol: 22, pp:1–29,
1997.

[3] S.H. Huang, K.C. Chen, K.T. Cheng and T.C. Lee, Compact
vector generation for accurate power simulation, Proc. 33rd
DAC., pp. 161–164, 1996.

[4] D. Marculescu, R. Marculescu, M. Pedram, Stochastic se-
quential machine synthesis targeting constrained sequence
generation, Proc. 34th DAC., pp. 696–701, 1996.

[5] R. Marculescu, D. Marculescu, M. Pedram, Vector com-
paction using dynamic markov models, IEICE T. Fund. of
Electronics Comm. and Comp. Sci.,E80-A(10), 1997.

[6] R. Marculescu, D. Marculescu, M. Pedram, Hierarchical se-
quence compaction for power estimation, Proc. 34th DAC.,
pp. 570–575, 1997.

[7] F.N. Najm, A survey of power estimation techniques in VLSI
circuits, IEEE Trans. on VLSI Systems 2(4), 1994.

[8] A. Pınar, C.L. Liu, Power invariant vector sequence com-
paction, to be submitted to IEEE Trans. CAD

[9] C. Tsui, R. Marculescu, D. Marculescu, M. Pedram, Im-
proving efficiency of power simulators by input vector com-
paction, Proc. 33rd DAC, pp. 165–168, 1996.

[10] S. Yang, Logic Synthesis and Optimization Benchmarks User
Guide V3.0, distributed as a part of IWLS91 benchmark dis-
tribution, 1991.


